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Abstract— Efficient algorithms for reduction operations
across a group of processes are crucial for good performance
in many large-scale, parallel scientific applications. While
previous algorithms limit processing to the host CPU, we
utilize the programmable processors and local memory avail-
able on modern cluster network interface cards (NICs) to ex-
plore a new dimension in the design of reduction algorithms.
In this paper, we present the benefits and challenges, design
issues and solutions, analytical models, and experimental
evaluations of a family of NIC-based reduction algorithms.
Performance and scalability evaluations were conducted on
the ASCI Linux Cluster (ALC), a 960-node, 1920-processor
machine at Lawrence Livermore National Laboratory, which
uses the Quadrics QsNet interconnect. We find NIC-based
reductions on modern interconnects to be more efficient
than host-based implementations in both scalability and
consistency. In particular, at large-scale—1812 processes—
NIC-based reductions of small integer and floating-point
arrays provided respective speedups of 121% and 39%
over the host-based, production-level MPI implementation.
In addition, the standard deviations in timings for the NIC-
based reductions were as much as two orders of magnitude
smaller than for the host-based reductions.
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I. I NTRODUCTION

Reduction collectives are essential components of many
high-performance computing (HPC) applications. Recent

performance evaluation studies show that large-scale sci-
entific simulations spend up to 60% of their time executing
reductions [1]. In-depth analysis of the scientific workload
at Lawrence Livermore National Laboratory shows similar
results [2]. Consequently, faster reduction algorithms can
substantially shorten the run times of many scientific
applications.

Development of efficient reduction algorithms has
proven to be a rich area of research. Reduction collectives
entail both communication (data transfer) and process-
ing (data reduction operations), and therefore efficient
implementations must consider the characteristics of the
network, the processor, and the interactions between them.
Over the years, many researchers have dedicated signifi-
cant effort to derive optimal and scalable algorithms [3],
[4], [5], [6], [7], [8]. However, with respect to the under-
lying system characteristics, all of this work commonly
assumed reduction processing must be performed by the
host CPU.

Network interface cards (NICs) for modern cluster in-
terconnects, such as the Elan3 used in Quadrics QsNet [9],
provide programmable processors and ample memory.
This added capability allows more functionality to be
delegated to the NIC processor. The termshost-based
and NIC-basedare used to indicate where functionality
is implemented. The focus of this paper is on the imple-
mentation of NIC-based reduction. That is, we examine

http://www.c3.lanl.gov/
http://www.ccs.lanl.gov/
http://www.lanl.gov/
mailto:fabrizio@lanl.gov
mailto:eitanf@lanl.gov
http://www.llnl.gov/
mailto:moody20@llnl.gov
http://www.um.es/
mailto:juanf@um.es
http://www.cis.ohio-state.edu/
http://www.ohio-state.edu/
mailto:panda@cse.ohio-state.edu


2

the process of delegating both the communication and
the data-processing tasks of reduction collectives to the
network interface card.

This article makes the following contributions. First we
discuss the benefits of NIC-based reduction, and describe
the design issues and solutions we developed. We then
present a detailed model to analyze and predict the perfor-
mance of reduction algorithms on the Quadrics network.
Finally, we present experimental evaluations to validate
our analytical model and examine the scalability of our
algorithms.

From this work we show that NIC-based reduction
exhibits better scalability and improved consistency over
host-based algorithms. This is especially true for classes
of reductions that are frequently used in large-scale, par-
allel scientific applications. For example, for summation
of single-element vectors of 32-bit integers and 64-bit
floating-point values over 1812 processors of the ASCI
Linux Cluster (ALC) [10], NIC-based reduction was, re-
spectively, 121% and 39% faster than with the production-
level, host-based MPI library. Moreover, the standard
deviations in timings for the NIC-based case were as much
as two orders of magnitude smaller than those for the host-
based case.

II. RELATED WORK

Huang and McKinley were possibly the first to realize
the potential of NIC-based collectives [11]. They examined
the use of implementing broadcast and barrier operations
on Asynchronous Transfer Mode (ATM) network adapters
to avoid the excessive processing overhead incurred in
the software protocol stack. To maintain portability to
even the most limited ATM devices, Huang and McKinley
placed rigid restrictions on the processing and memory
requirements of their algorithms. Specifically, their algo-
rithms were table-driven and performed a small number of
arithmetic and logical operations on a few scalar variables.
Even with such limitations, these NIC-based collectives
scaled significantly better than host-based versions.

Modern cluster interconnects removed the software bot-
tleneck from the protocol stack by using zero-copy, user-
level protocols. However, the same interconnects have
also dramatically reduced wire and switch latencies in
the network, so that now just the cost of transferring
data between the host CPU and the network interface
contributes significant overhead. At the same time the
processing capability and memory available on network
interface cards have increased. Consequently, NIC-based
collectives are still valuable and their implementation is
now more practical, which leads researchers to investigate
ever more complex NIC-based operations and algorithms.

Several recent studies have considered NIC-based mul-
ticast algorithms [12], [13], [14], [15], [16], [17]. Mul-
ticast is a complex operation which must accommodate

varying message sizes and destination sets, and address
flow control, acknowledgment collection, and reliability.
These studies take different approaches to meeting these
requirements, still the authors generally conclude that
modern NICs are capable of executing multicast more
efficiently than host-based implementations.

The work most closely aligned with our own is that
of Buntinas and Panda [18]. They investigated the poten-
tial of NIC-based reduction on clusters connected with
Myrinet [19]. In particular, they modified the network
drivers to implement binary AND and OR operations,
and integer and floating-point addition of a single 64-bit
value via binomial trees. For these cases they found that
NIC-based reduction has better scalability than host-based
reduction, and yields performance gains in clusters with
as few as 8 nodes. While their implementation provides
some additional flexibility, they leave the investigation of
more complicated reductions as future work.

This paper picks up where their work left off. We
investigate the use of different communication patterns and
a range of data sizes for an expanded set of reduction op-
erations, as well as an optimization for multi-element data
vectors. In addition, we propose an accurate parameterized
model which can be used to analyze and select the best
implementation for a given instance of a reduction. Finally,
we test our implementations at a dramatically increased
scale, running on a machine using as many as 906 nodes.

III. M OTIVATION AND BACKGROUND

NIC-based collectives have both advantages and dis-
advantages over traditional host-based approaches. This
section first discusses the relevant benefits and challenges
of NIC-based approaches. We then detail our particular
design goals and development environment.

A. Benefits of NIC-based Reduction

On modern interconnects, NIC-based collectives are
significantly faster than host-based versions. Efficient col-
lective implementations typically require a set of nodes to
exchange a series of related messages. In host-based im-
plementations, each message in the series must be passed
between the host processor and the network interface via
IO-bus transactions. NIC-based implementations, on the
other hand, handle messages immediately at the NIC,
eliminating transfers through the IO bus. Since IO-bus
transfers constitute a significant fraction of the overhead
in modern cluster interconnects, and because collectives
involving many processes entail many messages, NIC-
based collectives scale substantially better than host-based
versions as the size of the cluster increases. To date, most
NIC-based research has focused on this advantage [12],
[20], [18], [13], [14], [11], [15], [16], [17].

Another advantage of NIC-based collective operations,
which has thus far been overlooked, is that they perform
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more consistently than host-based implementations. The
host CPU is typically required to multitask processes other
than the application’s, such as operating system daemons
and resource management threads. Unfortunately, to ser-
vice another process, the operating system may deschedule
application processes at critical times. Descheduling a
process involved in a collective delays the completion
of the operation. This interference is stochastic, and the
chances for such delays worsen with increases in both
the frequency of collectives and the number of processes
involved. This effect is particularly dramatic in large-
scale clusters and has been shown to cause a slowdown
of 50% or more in tightly-synchronized applications [1].
The NIC, on the other hand, is essentially dedicated to
the application and so avoids most of the interference
associated with multitasking. Thus NIC-based collectives
are able to execute with more consistent times than host-
based collectives.

B. Challenges of NIC-based Reduction

Even though the NIC carries out the actual collective in
NIC-based implementations, the host must communicate
to the NIC, among other information, what operation is
to be done, which data are to be processed, and when the
operation is to start. Also, the NIC must notify the host
of the operation’s completion and deliver any final results.
Such host-NIC synchronization overheaddiminishes the
gains provided by implementing NIC-based collectives.
However, this overhead is relatively small and is not of
major concern.

A more important issue to consider is that of the NIC
processor’s capability. The user-programmable processor
on the NIC is considerably slower than the host processor
(more than 25 times slower on ALC). This difference
limits the complexity of the collectives and algorithms that
may benefit from NIC-based implementations. To com-
plicate matters further, the NIC processor typically lacks
functionality present in the host processor. For example,
there is no hardware-based floating-point support on the
Quadrics Elan3. The limitations of the NIC processor
proved to be the most challenging issue encountered in
our work.

C. Targeted Design Goals

Given the NIC processor limitations, much of the re-
search in NIC-based work so far has concentrated on
collectives which involve little processing. Collectives
such as barriers, broadcasts, and multicasts simply require
intermediate nodes to pass on the received message as is,
possibly with minor data restructuring. Because so little
processing is required, these algorithms incur little penalty
from running on slower processors, and the overall results
have been quite successful. This success inspired us to
investigate more complicated cases, namely reductions.

Our design goal was to support NIC-based implementa-
tions of the standard MPI reduce and allreduce collectives
for 32- and 64-bit integer and floating-point data types,
each having minimum, maximum, and summation opera-
tions. We seek to improve thereduction latency, by which
we mean the time from when the first process enters the
operation to when the final result is delivered to its final
destination.

D. Targeted Development Environment

We implemented NIC-based reduction on the Quadrics
QsNet network, a modern cluster interconnect technol-
ogy [9]. QsNet is based on two building blocks: a pro-
grammable network interface card called the Elan3 [21],
[22] and a low-latency high-bandwidth communication
switch called the Elite [23].

The Elan3 resides on the PCI bus and provides an
interface between the network and a processing node that
contains one or more CPUs. The Elan3 provides a user-
programmable, multi-threaded, 32-bit, 100 MHz RISC-
based processor; 64MB of local SDRAM, an MMU, and
other sophisticated processing features. The purpose of all
this hardware is to enable the implementation of higher-
level message processing protocols without requiring ex-
plicit intervention from the host CPU.

The Elan3 divides messages into a sequence of fixed-
length transactions for efficient transfer through the net-
work. The primary communication primitive supported by
the network is the Remote DMA (RDMA). RDMAs allow
for one-sided data transfer between remote processes, i.e.,
the remote process need not explicitly participate in the ex-
change. Transfer operations include PUT, which transfers
data to a remote address space, and GET, which acquires
data from a remote address space. Both operations can
access either host- or NIC-level memory.

The underlying network is circuit-switched and uses
source-based wormhole routing. It consists of Elite
switches connected in a fat-tree topology [24]. An Elite
provides eight bidirectional links, each with a raw band-
width of 400 MB/s (325 MB/s at the MPI level) and a full
crossbar switch with a low 35ns cut-through latency.

The Elite switch also provides hardware support for col-
lective communication, including barriers and broadcasts,
which is remarkably fast and scalable [25]. In fact, the cost
to broadcast a message to all nodes is comparable to the
cost of sending it to just one. This broadcast hardware sup-
port makes the implementation of the allreduce algorithms
trivial—an efficient reduce, followed by a broadcast from
the root, provides an efficient allreduce. For this reason
we will focus our attention on just the reduce phase in the
rest of the paper.

IV. D ESIGN ISSUES ANDSOLUTIONS

While host-NIC synchronization overhead poses some
concern, the primary challenges faced when developing
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NIC-based reduction are the limitations of the NIC proces-
sor. In this section, we describe the issues we encountered
along with the solutions we developed to overcome them.

A. Host-NIC Synchronization Overhead

The host must perform several tasks to delegate a
reduction operation to the NIC. This includes writing the
application data to and reading the final result from NIC
memory; informing the NIC processor of what operation
to perform, what data type to use, and the number of
vector elements to process; and providing the NIC with
lists of communication partners and intermediate data
buffers. The host must also instruct the NIC when to start
the operation, and the NIC must notify the host of the
operation’s completion. Such host-NIC synchronization
introduces overhead, but its cost can be minimized and/or
hidden.

By eliminating redundant information, we minimized
host-NIC synchronization overhead by reducing the
amount of physical data written to the NIC. Where pos-
sible, we referred to collections of data items using a
single index parameter. For example, we grouped inter-
mediate data buffers intochannels, which enabled the
host processor to refer to a set of buffers through a
single channel number. A similar technique was used with
the data structures that list the communication partners.
Typically, applications repeatedly iterate over a limited set
of communication patterns. Thus we used some portion of
NIC memory as a cache so the host processor could refer
to communication data structures previously copied to the
NIC with a simple cache-line number.

Additionally, many data items assume limited ranges, so
only a few bits are needed to encode their value. For ex-
ample, 8 or 16 different channels and 16 or 32 cache slots
will often be more than enough. We packed the channel
and cache-line numbers along with the type of collective,
e.g. reduce or allreduce, the reduction operation, e.g. 32-
bit integer addition or 64-bit floating-point maximum, and
the vector size into a single 32-bit value using bit masks.

We also worked to hide the host-NIC synchronization
overhead. The benefits of NIC-based reduction are gained
when a node must receive, process, and then send a
message. In the case of a reduction tree, this corresponds to
just the intermediate nodes. At the leaves, which only send
data, and the root, which only receives and processes data,
NIC-based reduction provides no benefit, and the associ-
ated host-NIC synchronization only gets in the way. By
using NIC-based reduction only during intermediate steps,
host-NIC synchronization costs can be largely removed
from the critical path. We found that this technique can
cut host-NIC synchronization overhead by more than half.

B. NIC Processor Functionality

The first major obstacle to satisfying our design goals
was the lack of hardware support for floating-point opera-
tions on the Quadrics Elan3 processor. The NIC processor
offers only integer instructions so floating-point operations
must be emulated in software. Efficient emulation of
floating-point operations meeting all of the various repre-
sentations, rounding methods, and exceptions standardized
in the IEEE 754 floating-point specification is not trivial.
To solve this problem, we ported the SoftFloat [26] library
to the Elan3. SoftFloat implements IEEE-754-compliant
floating-point operations via integer and bit-wise logic
instructions. It is designed to be efficient, and it is open
source and freely available.

C. NIC Processor Speed

The biggest obstacle faced in designing NIC-based
reductions is the speed of the NIC processor. Direct
comparison of the clock rate of the Elan3 processor, at
one-hundred megahertz, to that of a typical host processor
in the multi-gigahertz range shows an order of magnitude
difference in processor speeds. The gap is wider when ex-
ecuting floating-point operations, which must be emulated
in software.

To gain intuition on the communication and computa-
tion characteristics of the Elan3 and host processors, we
first implemented a simplistic reduce algorithm referred
to as serial reduction. In this algorithm the root of the
reduction is solely responsible for receiving and reducing
all of the data. In a group ofP nodes, the(P−1) non-root
nodes simultaneously send their data to a corresponding
RDMA buffer at the root. The root waits until it has
received all of the messages and then reduces the data
in serial order. The reduction is completed when the root
signals the group with a hardware-based broadcast.

Serial reduction tests involving 2-13 nodes for various
reduction operations and data sizes produced Figure 1.
Figure 1(a) shows the host-based serial reduction latencies,
while Figure 1(b) shows the NIC-based times. Each figure
provides the latencies of 32-bit integer addition and 64-
bit floating-point addition for one- and two-element vec-
tors. Also shown is a NOP operation which performs no
computation. Since the latency for a NOP serial reduction
consists only of communication costs, it represents a
lower bound for the reduce algorithm with respect to
computation.

In comparing these two figures, it is immediately ob-
vious that NIC-based reductions depend significantly on
the reduction operation as well as the reduction vector
size, while host-based reductions are largely independent
of both. In the NIC-based graph, simple operations scale
considerably better than more complicated ones: compare
integer addition to floating-point addition. Also, even fast
operations are sensitive to small changes in data size:
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Fig. 1. Serial reduction latencies

observe integer addition for one- and two-element vectors.
Each curve in the host-based graph, on the other hand, lies
on or just above the NOP curve, implying that computation
is insignificant compared to communication.

That the NIC processor is slower than the host processor
was already understood, but it is now clear that this
difference is substantial, since computation costs may
be comparable to communication costs. While efficient
host-based reductions may be designed considering only
communication, designs for NIC-based reduction are more
complicated because they must also account for computa-
tion.

D. Simple Operations and Small Data Sizes

NIC-based reductions will perform well only for simple
operations and small data sizes. The slow NIC processor
will become overwhelmed if given anything more compli-
cated. This is a tight constraint on the class of reductions
where NIC-based implementations may be valuable. How-
ever, a large majority of the reductions posed by practical
programs fall within this class.

Reductions involving simple operations on small data
sizes are the prevalent case in many scientific applications.
Researchers have verified this claim across a collection
of large-scale scientific programs covering a range of
application domains [27]. That collection includes linear
systems solvers, simulators for gas dynamics, particle
and photon transport, and shock-wave analysis. In further
support of this, we profiled the MPI allreduce operations
performed during the execution of SAGE [28]. SAGE is
representative of scientific applications running on large-
scale parallel clusters in the ASC program. The results are
shown in Figure 2.

Figure 2(a) shows the distribution of reduction operator
types. Note that only two simple data types are used by
SAGE: 32-bit integers and 64-bit floating-point numbers.
Additionally, only a few simple types of operations are
used, namely, minimum, maximum, and summation. Typ-
ical reductions thus require limited processing functional-
ity.

Equally informative is Figure 2(b), which shows the
cumulative distribution of the data sizes for both integer
and floating-point data types. The data reveal that 95%
of all reductions use three or fewer elements and all
reductions use eight or fewer.

Together, these two figures imply that typical reductions
involve simple operations on small vectors. Thus, while
the NIC processor provides limited capability, it is the
common case reduction which stands to benefit from NIC-
based implementations.

E. f -nomial Trees – Generalized Binomial Trees

Communication structures in efficient reduction algo-
rithms tend to balance message processing time with
message latency. For simple operations and small data
sizes, message processing time in host-based reductions
is dependent only on the communication costs, while it
is affected by the communication costs, the reduction
operation, and the vector size in NIC-based implemen-
tations. Thus, while a single communication structure will
suffice for efficient host-based reductions, the slow NIC
processor demands a range of communication structures
for efficient NIC-based reductions. For this work, we chose
to implementf -nomial trees (a.k.a.k-nomial trees), since
they provide such a range of communication structures
by generalizing binomial trees, a well-known reduction
communication structure.
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Fig. 2. Profile ofMPI Allreduce operations in SAGE

Binomial trees are commonly used in reduction algo-
rithms because they have two useful properties, 1) they
have a regular structure, so they are easy to implement;
and, 2) they keep many nodes involved throughout the
collective, so they are well parallelized. In fact, binomial
trees are known to be optimal communication structures
for reduction in synchronous networks [4], i.e., those in
which the sender and receiver incur the same cost for
message transfer (latency plus processing).f -nomial trees
generalize binomial trees to add a third valuable property:
they provide a range of communication structures, so one
may selectively balance message processing time against
message latency.

While the goal is not to dwell on presentation of a new

algorithmic communication structure,f -nomial trees are
somewhat uncommon so some discussion is called for.
Here we describef -nomial trees starting from a quick
review of the operation of binomial trees, from which
the generalization is trivial. Also, although messages in
reduction trees collapse to the root node, it is easier
to describe the structure of a tree as it expands. For
convenience of description assume the goal is to broadcast
a message from the root to all nodes in the tree.

The operation of binomial trees can be described as
follows. Starting from the root, the broadcast message
is distributed through a series of communication phases.
During each phase, each node with a copy of the message
sends it to another node which does not have a copy, so
by the end of each phase, the number of nodes holding
a copy of the message is doubled. Thus, in a binomial
tree, the number of nodes the message can reach grows as
a power of 2 (hence the prefix “bi”) with the number of
phases.

An f -nomial tree generalizes this algorithm so that,
during each phase, each node with a copy of the message
sends to(f − 1) others who do not, as opposed to just
one. For instance, during the first phase, the root sends
the broadcast message to(f − 1) children. By the end
of the first phase, the root and its(f − 1) children all
hold a copy of the message, for a total off nodes. In the
second phase, each of thesef nodes becomes a parent to
(f − 1) children who have yet to receive the message. By
the end of the second phase, the message spreads from the
f parent nodes to each of their(f − 1) children, reaching
a total off +f(f−1) = f2 nodes. In general, the number
of nodes the message can reach grows as a power off
with the number of phases.

Our reduction algorithm is based on this communication
structure. However, since we implement reduction rather
than broadcast, messages collapse to the root rather than
expand away from it.

As a concrete description of anf -nomial reduction,
consider Figure 3, which shows a graph representing a 4-
nomial tree covering a set of 16 nodes. In this example, the
goal is to reduce data distributed among the 16 nodes and
place the result at the root node 0 using a 4-nomial-tree
communication structure. The arcs in the graph connect
communication partners and are labeled with the phase
number in which the corresponding communication takes
place; all messages travel upward from children to parents.
During the first phase of the 4-nomial algorithm, parent
node 0 receives and reduces(4 − 1) = 3 messages from
nodes 1, 2, and 3; while likewise, nodes 4, 8, and 12
simultaneously receive and reduce data from their own
three children. At the end of the first phase, the distributed
data has been partially reduced and localized to the four
parent nodes 0, 4, 8, and 12. The algorithm completes
after the second phase when node 0 receives and reduces
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the partial results from the three, now child, nodes 4, 8,
and 12. Thus, in two communication phases, the 4-nomial
tree is able to perform a reduction over42 = 16 nodes.

f -nomial trees offer a range of communication struc-
tures to select from through choice of the degree of the
tree f . For example, Figure 4 showsf -nomial trees of
various degrees, all which cover 16 nodes. This flexibil-
ity allows one to trade off between communication and
computation costs. Each level of the tree corresponds to
a communication phase, while the width is related to the
amount of computation any one processor is required to
do. Communication-bound reductions will favor wide trees
in order to minimize the number of tree levels, and thus
the number of communication phases. Computation-bound
reductions will fare better with tall trees which better
parallelize the processing. The best choice for the degree
of the tree depends on the relative costs established by a
particular problem. Section V will illustrate how to choose
the optimal degree analytically.

F. Vector Split Optimization

NIC processors are slow, so it is desirable to keep as
many of them working as possible in order to utilize their
collective processing power. Often it is worthwhile to do
a little extra communication in return for a substantial
reduction in computation. In other words, computationally
intensive NIC-based reductions should be highly paral-
lelized.

For multi-element vectors, we can increase parallelism
through an optimization proposed by Van de Geijn [29].
Basically, the idea is to split the reduction vector and
distribute the pieces to distinct groups of nodes. The
groups then reduce the pieces in parallel and combine the
results to form the fully-reduced vector in the last step.
Presented with this optimization, there are two options to
reduce multi-element vectors: 1) reduce one large vector
serially through a single tree, or 2) reduce smaller pieces
of the vector in parallel with many trees. The second
approach requires extra communication to distribute and
recombine the pieces of the vector. However, if com-
putation is expensive, significant savings are gained by
processing the pieces in parallel.

As an example, which is diagrammed in Figure 5,
assume we would like to employ this optimization to
reduce a two-element vector across eight nodes. The vector
elements are shown as small rectangles located adjacent
to circles representing the nodes on which they reside.
As indicated by the dotted line that bisects the circles
horizontally in the left section of the figure, the group of
eight nodes is first split into two groups of four. Then the
top element of the vector is distributed to the top group of
four nodes and the bottom element to the bottom group. To
do this, nodes pair up with a partner in the opposite group
and send it the appropriate vector element, as represented
by the arrows in the diagram. The nodes then reduce
the element received from their partner with their local
copy of the corresponding element. At this point, the
top group contains all information about the top element,
and the bottom group contains all information about the
bottom element. Once this distribution is complete, the two
groups simultaneously perform group-wise reductions on
the element assigned to them. This is represented by the
dotted boxes shown in the middle section of the figure.
Finally, as shown in the right section of the figure, the
two fully-reduced elements are recombined to produce the
fully reduced, two-element vector.

This optimization was added to the basicf -nomial
algorithm to create a new algorithm we callf -nomial
split. At the beginning the vector is recursively split in
half a specified number of times, with the pieces being
distributed among the appropriate number of groups. The
f -nomial tree algorithm is then used within each of the
groups to reduce the smaller pieces in parallel. The root
of the f -nomial tree in each group will receive a fully-
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reduced piece of the vector, which is then sent to the
primary root of the overall reduction during the last step.
The improvement due to this optimization proved to be
dramatic and is discussed in Section VI-B. Essentially, it
allows NIC-based reductions to scale substantially better
than they otherwise would have for larger vector sizes.

V. A NALYTICAL MODELS

In this section, we apply analytical models to the
design of efficient NIC-based reductions. Simple model
parameters are introduced and used to describe quantitative
differences between host-based and NIC-based reductions.
Then the model parameters are applied tof -nomial reduc-
tions in order to find the best degreef to use for a given
reduction problem.

A. The Model Parameters

The sharp linear trend observed in Figure 1 permits
accurate modeling of serial reduction latencies using just
a slope and intercept. Furthermore, the serial reduction
algorithm will serve as the basic building block to more
sophisticated tree-based algorithms. Given an accurate
model for the building blocks, one can piece together a
model for more sophisticated algorithms. Thus, the slope
and intercept of the serial reduction latency curves are
sufficient to quite accurately predict the performance of
any other proposed algorithm.

Continuing in this direction, it is instructive to define
the slope and intercept in terms of more meaningful
parameters. To account for the linear trend, we recall the
implementation of the serial reduction algorithm: all nodes
simultaneously send their data to the root, which receives
all, and then reduces all messages in serial order. Since
the nodes send to the root simultaneously, all messages
worm their way through the network to the root in parallel.

Parameter Meaning

C constant due to initial overhead
L message latency
r(M) reception cost of a message of size M
c(M, OP) reduction cost of a message of size M, dependent

on the operation OP
P number of nodes

TABLE I

MODEL PARAMETERS

Hence, regardless of the number of nodes involved, the
cost of message latency is suffered only once. On the
other hand, the root receives and reduces each message
serially, which introduces reception and reduction cost on
a per node basis. With these observations, we defined the
model parameters as listed in Table I. Throughout the rest
of this paper, the functional parametersM (message size)
and OP (reduce operation) will typically be suppressed
from the various terms.

This model modifies the LogP model [30] to better
address the needs of this work. The parameterr is used
in place of o, the cost to receive a message, and the
parameterg is represented as(r + c), the time required to
fully process a message. While parametero simultaneously
represents both send and receive overhead in LogP, it is
renamedr for clarity since it is only used to account
for receive overhead here. Also, the parameterg is split
to separate that part ofg which is dependent solely
on message size,r(M), from that part which is also
dependent on the reduction operation,c(M,OP ). The
message latency, the reception costs, and the reduction
costs may all differ between host-based and NIC-based im-
plementations. These redefinitions allow one to explicitly
account for those differences with dedicated parameters.
Additionally, sincer andc may be general functions of the
message size, one may better model nonlinearities, such
as data packetization and caching, which are relevant for
small data sizes.

With this model it is simple to describe the linear form
of the serial reduction latency curves:

Tserial(P ) ≈ C + L + (P − 1) · (r + c).

This expression is shown pictorially in Figure 6, which
depicts a timeline of the events required for the root node
of the serial reduction to receive and reduce(P − 1)
vectors.

To assign numerical values to the parameters, the values
of r andc were extracted from the serial reduction data for
various values ofM and OP . The termsL and C were
fit to the data, andP is given for a particular problem.
Note that whiler is dependent on the message size in
general, it turns out to be constant for the cases we are
interested in—reductions involving vector sizes of only a
few elements, say up to eight, which all fit into a single
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64-byte, fixed-length RDMA transaction on the Quadrics
network. Thus, whether the problem involves one-element
vectors or eight-element vectors, the receive time is the
same—the cost to receive one 64-byte packet.

To provide some context of typical model parameter
values, communication and initialization values are given
in Table II and computation values are listed in Table III.

Parameter Value

L 2.90
r 0.42
C 2.70

(a) Host-based

Parameter Value

L 2.10
r 0.42
C 6.20

(b) NIC-based

TABLE II

COMMUNICATION AND INITIALIZATION PARAMETER VALUES (µS)

Operation 1-elem 2-elem 4-elem 8-elem

Int32 Max 0.03 0.03 0.07 0.13
Int32 Add 0.02 0.03 0.06 0.13
Float64 Max 0.04 0.07 0.14 0.28
Float64 Add 0.02 0.06 0.12 0.16

(a) Host-based

Operation 1-elem 2-elem 4-elem 8-elem

Int32 Max 0.27 0.46 0.84 1.60
Int32 Add 0.25 0.44 0.76 1.44
Float64 Max 0.67 1.27 2.44 4.80
Float64 Add 1.50 2.95 5.80 11.56

(b) NIC-based

TABLE III

COMPUTATION PARAMETER VALUES (µS)

These numbers demonstrate many of the design issues
previously mentioned. First, the message latencyL for
NIC-based reductions is less than that for host-based
reductions. This highlights the savings in PCI-bus transac-
tion costs. Second, the overheadC is higher for NIC-based

reductions due to host-NIC synchronization costs. Finally,
the computation costs are much higher for the NIC-based
reductions.

B. Modelingf -nomial Trees

For a given problem we would like to be able to choose
the bestf -nomial tree analytically, so now we apply our
model to the proposed algorithm. Since the root node of an
f -nomial tree is involved in every phase of the algorithm,
the latency of the entire operation may be predicted by
focusing on the work the root node must do. Assuming
a full tree, anf -nomial tree generateslogf P phases,
during each of which the root has(f − 1) children. Each
phase will be of the linear, building-block form of the
serial reduction algorithm previously discussed. In other
words, the critical path consists of a series oflogf P
serial reductions, each involvingf nodes. Thus, inserting
Tserial(f) as derived in the previous section, and adjusting
for initial overhead, one arrives at the following as a model
of the f -nomial reduction latency:

T full
fnomial(P, f) ≈ C + Tserial(f) · logf P

≈ C + [L + (f − 1) · (r + c)] · logf P.

An example application of the model to intermediate
phases is shown pictorially in Figure 7. In this figure the
two horizontal timelines represent two intermediate parent
nodes in thef -nomial tree, the bottom node being one of
the children of the top node. To start, the initial overhead,
C, is encountered in parallel across all nodes as a one
time cost. Then, after waiting for timeL, the two parent
nodes each receive and reduce the data from their(f − 1)
children of the first phase. Starting the second phase, the
bottom node, now a child to the top node, immediately
sends its partial result to its parent. Again, after timeL,
the top node receives and reduces the data from its(f−1)
children of the second phase. The reduction continues as
the top node, now a child to some higher node, sends its
partial result to its parent to begin the third phase, which
is not shown.

Given the model forT full
fnomial(P, f), it is straightfor-

ward to compute the optimal degreef to use for a
particular problem. Basically, the goal is to find that value
of f which minimizes the following expression:

T full
fnomial(P, f) ≈ C + [L + (f − 1) · (r + c)] · logf P.

To do so, first the derivative ofT full
fnomial(P, f) is taken
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with respect tof :

∂

∂f
T full

fnomial(P, f)

≈ ∂

∂f
{C + Tserial(f) · logf P}

=
∂Tserial(f)

∂f
· logf P + Tserial(f) ·

∂ logf P

∂f

=
∂[L + (f − 1) · (r + c)]

∂f
· [ln P/ ln f ]

+ [L + (f − 1) · (r + c)] · ∂[lnP/ ln f ]
∂f

= [(r + c)] · [ lnP

ln f
]

+ [L + (f − 1) · (r + c)] · [− lnP

f · ln2f
]

= (r + c) · lnP

ln f
− [L + (f − 1) · (r + c)] · lnP

f · ln2f
.

Then this expression is set equal to zero andf is isolated:

(r + c) · lnP

ln f
− [L + (f − 1) · (r + c)] · lnP

f · ln2f
= 0

(r + c) · lnP

ln f
= [L + (f − 1) · (r + c)] · lnP

f · ln2f
f · ln f · (r + c) = L + (f − 1) · (r + c)

f · ln f = L/(r + c) + (f − 1)
f · ln f − f = L/(r + c) − 1

f · (ln f − 1) = L/(r + c) − 1.

The above expression gives the best value off to use given
L, r, and c. Since this is a transcendental expression,f
must be solved for numerically by finding the intersection
of f · (ln f − 1) with the functionL/(r + c) − 1. In our
case,L andr are constants, andc will be determined by
the operation and data size of a particular problem. After
settingL = 2.10µs andr = 0.42µs, values corresponding
to NIC-based reduction, we plotted the intersection of
these two functions for various values ofc in Figure 8,

Fig. 8. Plot off · (ln f − 1) andL/(r + c)− 1 for L = 2.10µs, r =
0.42 µs, and variousc

Only integersf ≥ 2 produce validf -nomial trees. For
intersection points which are between two integers, one
must choose the best of the two. For the values used for
L and r, note that the best degree may fall anywhere in
the range[2, 6] depending on the value ofc. The upper
bound is reached somewhere between 5 and 6 whenc = 0.
Note whenf = 6, a parent node receives 5 messages so
that the reception costs accumulate to exactly balance the
message latency,5 ·r = L. As computation cost increases,
the best degree decreases.

It is interesting to consider the range[1, 2]. Values off
smaller than 2 do not produce meaningfulf -nomial trees.
However, if we choose some arbitraryf in this range, say
f = 1.5, to substitute back intoT full

fnomial(P, f), we arrive
at:

T full
fnomial(P, 1.5)

≈ C + [L + ((1.5) − 1) · (r + c)] · log(1.5) P

= C + [L + 0.5 · (r + c)] · log1.5 P.

When compared to binomial trees, this value off pro-
duces trees which have more communication phases, since
log1.5 P > log2 P , in return for reduced amount of recep-
tion and computation costs,0.5 · (r+ c) instead of(r+ c).
Thus, trees in this range do more communication to save
on computation. This is the range in which optimizations
like the vector split are valuable.

C. Refining the Model

The expression forT full
fnomial(P, f) was derived assum-

ing a full tree, i.e., assuminglogf P is an integer. The
expression for an arbitrary number of nodes is more
complex. When the number of nodes is not an integer
power f the root may not have a full set of children
during the final phase. In this case, the root still incurs
the message latency costL while waiting for the data of
the last phase to arrive, however, there will be fewer than
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the full set of(f − 1) messages to receive and reduce. A
more detailed analysis will show that:

Tfnomial(P, f) ≈ C + L · dlogf P e +
(r + c) · (f − 1) · blogf P c +

(r + c) · dP/fblogf Pc − 1e.

Here logf P represents roughly the number of phases
in the f -nomial tree. In particulardlogf P e is the total
number of phases, whileblogf P c is the number offull
phases, i.e., those in which the root has a full set of(f−1)
children. The term involvingL accounts for the message
latency cost incurred from each phase of the tree. The last
two (r+c) terms together sum the reception and reduction
costs incurred for processing each child. Of these two
terms, the first counts the number of children processed
in the full phases, while the second counts the number
of children in the final phase, if less than a full set. An
example given in Figure 9 demonstrates how these terms
apply to a 16-node, 3-nomial tree.

With this expression forTfnomial(P, f) it is nontrivial
to express the best degreef in terms of the other model
parameters. However, in practice the best degree tends to
be small, so a small set of values may be evaluated nu-
merically to find the best one. This approach is illustrated
graphically when the model is validated in Section VI-C.

VI. EXPERIMENTS

Various versions of thef -nomial algorithm were im-
plemented for experimental purposes. Results from these
tests are presented in this section to validate design choices
and to illustrate the benefits of NIC-based reduction. The
algorithms were developed and initial performance evalua-
tions were taken on the “crescendo” cluster at Los Alamos
National Laboratory, which consists of 32 dual-processor

nodes with 1.0 GHz Pentium IIIs and the Quadrics QsNet
network. Scalability analysis was performed on the ALC
located at Lawrence Livermore National Laboratory. The
ALC uses 960 dual-processor nodes with 2.4GHz Xeons
and the Quadrics QsNet network.

A. Implementation and Testing Details

This section provides details about the implementation
and testing methods relevant for proper interpretation of
the results given in the following sections.

First, each node implements NIC-based reduction us-
ing a single thread running on a single NIC, regardless
of the number of local host processes. When multiple
host processes are involved on a single node, the host
processor is used to first reduce the local data vectors in
shared memory before initiating the NIC-based portion of
the algorithm. In NIC-based reduction, one accepts the
increased computational cost associated with performing
reduction processing on the slower NIC processor in return
for elimination of extraneous data transfers between the
host and network. However, if a collection of data is
already located in host memory, one may as well use the
faster host processor to reduce it. In addition to the obvious
computational savings, less data needs to be sent through
the PCI-bus.

Second, for timing purposes, a barrier was inserted
between each of the NIC-based reductions in order to
serialize consecutive invocations. Since QsNet provides
a hardware-based barrier mechanism, such barriers keep
the distributed nodes very tightly synchronized. Although
such synchronization is not required for reduction, the
measurement procedure is simplified since there is no need
to worry about pipelining effects due to nodes starting the
next operation before the previous one has completed.

Third, for host-based reduction we used the reduce
collective from the vendor-provided, production-level MPI
library. The MPI implementation internally delegates the
work to a reduction function, calledelan reduce(), pro-
vided in the lower-level Quadrics Elan library [21]. The
Elan algorithm, in turn, performs a reduction via a 4-ary
tree followed by a hardware-based broadcast of the result.
This trailing broadcast simultaneously serves as a global
synchronization step and acts to extend the reduce into an
allreduce. Thus, theelan reduce() function implements
allreduce rather than reduce, as used in the NIC-based
reduction. Even so, the tests remain fair because the cost
of the barrier inserted between each of the NIC-based
reductions offsets the cost of the broadcast that completes
each of the host-based reductions.

Finally, when taking measurements, we found a large
variance in the reduction latency from one invocation
to another, especially for host-based reductions. Unless
otherwise stated, the reported reduction latency as the
average latency over 100,000 iterations.
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B. Validating the Vector Split Optimization

By increasing parallelism in NIC-based reductions the
vector split optimization can save significant computation
costs at the expense of additional communication. This
section validates this claim.

The performance of the NIC-basedf -nomial split algo-
rithm for 64-bit floating-point addition on 512 nodes was
measured for various vector sizes. The results are shown in
Figure 10, where the horizontal axis represents the number
of recursive splits the vector undergoes before its pieces
are reduced throughf -nomial reduction. One split implies
that the vector is broken into halves, two splits implies
quarters, and so on. Data points are not shown if the
corresponding reduction vector contains fewer elements
than pieces implied by a given number of splits.

The effect of the vector split optimization for multi-
element vectors is quite pronounced. After three recursive
splits, the 8-element latency is improved by nearly a factor
of three, while for four recursive splits, the 16-element
case is over three times faster. The trend suggests that the
larger the vector, the greater the benefit.

Although the vector split optimization enables NIC-
based reductions to scale better than they otherwise would
have, there is still a limit on the performance it can
achieve. Note that a latency of 140µs for a 16-element
reduction may still be much more than what a host-
based implementation could provide. And, interestingly,
one may note that the latency for a two-element vector
actually increases slightly after one split. This of course
will happen if the total savings in computation is less
than the added communication cost of the distribution and
recombination steps. However, the crossover point can be
computed to always choose the better of the two options.
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Van de Geijn discusses the details in [29].

C. Validating the Model andf -nomial Trees

NIC-based reduction latency is dependent on the degree
of the f -nomial tree used. In order to pick the bestf -
nomial tree, we would like to rely on our model. This
section illustrates the accuracy of the model and the impact
of changingf for a given problem.

Figure 11, shows predicted and measured NIC-based
f -nomial reduction latencies as a function of the degree
f . The plots correspond to 64-bit floating-point addition
on a 31-node system using vectors sizes of 1, 2, 4, and
8 elements. Here, the refinedf -nomial tree model from
Section V-C uses the NIC-based parameter values given
in Section V-A, which were derived from serial reduction
tests on crescendo.

The figure indicates that the model predicts NIC-based
reduction latencies with high accuracy. For instance, when
choosing among NIC-basedf -nomial trees, the model
correctly indicates that a degree of 4 is best for 64-bit
floating-point addition of 1-element vectors, and a degree
of 2 is best for 2, 4, and 8-element vectors. Although not
shown here, the model also accurately predicts host-based
reduction performance. This allows us to extrapolate al-
gorithm scalability and consider trade-offs between design
choices analytically. This is important because the problem
parameter space is large and opportunities to run tests on
large-scale clusters are rare.

Note how the degree of thef -nomial tree affects reduc-
tion latency. Small vectors, which require less processing
time, lead to curves that are essentially flat for the de-
grees tested, while larger vectors tend to heavily favor
lower-degree trees: compare the one-element curve to the
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eight-element curve. Additionally, although not shown,
reduction operations simpler than floating-point addition
strongly favor higher-degree trees. Such variation does not
exist in host-based reduction, where message processing
time is effectively independent of both the vector size and
the type of computation being performed.

D. Latency Measurements

We timed the latencies for host-based and NIC-based
reduction over a variety of operations and data sizes,
using both one and two processes per node. We found
that NIC-based reductions are capable of completing with
lower latencies than host-based versions. To illustrate this
point we show the single-element vector results obtained
for host-based and NIC-based 32-bit integer addition in
Figure 12(a) and 64-bit floating-point addition in Fig-
ure 12(b). In all measurements we consider a 4-nomial
tree, which provides the best performance for the config-
urations used in the experiments.

The NIC-based implementations scale considerably bet-
ter than the host-based ones. Indeed, as one may infer from
the 32-bit integer addition plot, our NIC-based implemen-
tation was able to perform simple integer reductions in
about half the time it took the host to do so. Furthermore,
even with the cost of emulating floating-point addition on
a much slower processor, the NIC-based implementation
was able to substantially outperform the host-based re-
duction. When reducing over 906 nodes, we were able to
obtain latencies as low as 40µs for integer operations and
a slightly higher time of 65µs for floating-point. In the
largest configuration tested—1812 processors—our NIC-
based algorithm summed single-element vectors of 32-
bit integers and 64-bit floating-point numbers in 73µs
and 118µs, respectively. These results represent respective
improvements of 121% and 39% over the host-based,
production-level MPI library.

We also note that system noise does have an effect in
NIC-based reductions. This is apparent when comparing
the latencies recorded for the case of two processes per
node to those obtained for one process per node, and when
comparing the performance predicted by the model to the
actual measurements. The NIC-based implementation is
subject to host-level process interference during the time it
takes the host processes to initiate the reduction operation.
Once initiated, however, the NIC-based algorithm avoids
process interference throughout the execution of the reduc-
tion. As a result, our NIC-based reduction implementation
is only marginally affected by the system noise when
compared to the host-based results.

E. Consistency Measurements

Because NIC-based reductions avoid much of the pro-
cess interference that host-based implementations are sub-
ject to, NIC-based reductions execute with more consistent
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Fig. 12. Host-based and NIC-based reduction latencies for single-
element vectors

latencies than host-based implementations. In our tests,
the host-based latencies varied substantially from one
invocation to another. The best time recorded for an
individual invocation was about three times better than the
average. The NIC-based results, on the other hand, were
quite consistent

To further illustrate this point, Figure 13 shows a
distribution graph of the latencies recorded for NIC-based
and host-based 64-bit floating-point addition of a single-
element vector over 900 nodes. Unlike measurements for
the average reduction latency, to obtain this distribution,
100,000 reduction invocations were timed individually,
and the resulting set was binned to yield a histogram.

Note that the NIC-based latencies are largely contained
within a sharp spike, while the host-based latencies are
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spread across a wide range of values. To be precise, 97%
of the NIC-based reductions fall with a spread of only
4µs, while for host-based reductions, only 57% fall within
a spread of 20µs. Indeed, a substantial percentage of host-
based latencies extend far beyond the right-hand limit of
the graph. After discarding the highest 1% of the samples,
the statistics in Table IV were calculated.

Reduction Average (µs) Std. Deviation (µs)

host-based 89.30 65.26
NIC-based 73.67 0.29

TABLE IV

REDUCTION LATENCY STATISTICS FORSINGLE-ELEMENT 64-BIT

FLOATING-POINT ADDITION OVER 900 NODES

Note the drastic, two order-of-magnitude difference in
the standard deviations. This large difference in con-
sistency is indicative of the nondeterministic effect that
process interference imposes on host-based reduction im-
plementations. Even when the lowest recorded host-based
latency is faster than the lowest recorded NIC-based
latency, the spread in host-based latencies often pushes
its average higher. In this case, for example, the average
host-based latency, at 89µs, is substantially higher than
the NIC-based average, at 74µs. By avoiding host-level
process interference, we found that NIC-based reductions
are able scale significantly better than host-based versions.

VII. C ONCLUSIONS

Modern cluster interconnects provide programmable
processors and local memory on the network interface
card (NIC). We successfully exploited these features in the
Quadrics QsNet to implement reduction algorithms on the
NIC, as opposed to the host processor where reductions
are traditionally performed. The biggest challenge we

faced was the slow speed and limited functionality of
the NIC processor. Overcoming these obstacles involved
designing a family of algorithms for a range of problem
configurations, deriving a communication and computation
model to select from among them, and implementing
IEEE-compliant floating-point operations on an integer-
only processor. We illustrated how NIC-based reductions
gain efficiency over host-based versions by eliminating
data transfers between the host and the network, as well
as by avoiding host-level process interference. We found
that NIC-based reductions outperform host-based versions
in two important ways: reduced latency and increased
consistency.

Our experimental results demonstrate low latency
and impressive scalability. In the largest configura-
tion tested—1812 processors—our NIC-based algorithm
summed single-element vectors of 32-bit integers and 64-
bit floating-point numbers in 73µs and 118µs, respectively.
These results represent respective improvements of 121%
and 39% over the host-based, production-level MPI li-
brary. In addition, the standard deviations in timings for
the NIC-based reductions were as much as two orders of
magnitude smaller than the host-based equivalents.
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